Nonlinear three-dimensional patterns of the Marangoni convection in a thin film on a poorly conducting substrate

Author:

Samoilova Anna12ORCID,Permyakova Evelina V.12

Affiliation:

1. Institute of Continuous Media Mechanics, UB RAS, Academician Korolev Street 1, 614013 Perm, Russia

2. Department of Theoretical Physics, Perm State University, Bukirev Street 15, 614990 Perm, Russia

Abstract

We investigate the dynamics of a thin liquid film that is placed atop a heated substrate of very low thermal conductivity. The direct numerical simulation of the stationary long-wave Marangoni instability is performed with the system of coupled partial differential equations. These equations were previously derived within the lubrication approximation; they describe the evolution of film thickness and fluid temperature. We compare our results with the early reported results of the weakly nonlinear analysis. A good qualitative agreement is observed for values of the Marangoni number near the convective threshold. In the case of supercritical excitation, our results for the amplitudes are described by the square root dependence on the supercriticality. In the case of subcritical excitation, we report the hysteresis. For relatively high supercriticality, the convective regimes evolve into film rupture via the emergence of secondary humps. For the three-dimensional patterns, we observe rolls or squares, depending on the problem parameters. We also confirm the prediction of the asymptotic results concerning the nonlinear feedback control for the pattern selection. This article is part of the theme issue 'New trends in pattern formation and nonlinear dynamics of extended systems'.

Funder

Russian Science Foundation

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. THE INFLUENCE OF PLATE SURFACE INHOMOGENEITY ON THE OSCILLATIONS OF THE CONFINED GAS BUBBLE;Interfacial Phenomena and Heat Transfer;2024

2. Introduction to ‘New trends in pattern formation and nonlinear dynamics of extended systems’;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-02-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3