Fuzzy logic: about the origins of fast ion dynamics in crystalline solids

Author:

Gombotz M.1,Hogrefe K.1,Zettl R.1,Gadermaier B.1ORCID,Wilkening H. Martin. R.12ORCID

Affiliation:

1. Institute for Chemistry and Technology of Materials, Christian Doppler Laboratory for Lithium Batteries, Graz University of Technology (NAWI Graz), Stremayrgasse, 9, 8010 Graz, Austria

2. ALISTORE – European Research Institute, CNRS FR3104, Hub de l’Energie, Rue Baudelocque, 80039 Amiens, France

Abstract

Nuclear magnetic resonance offers a wide range of tools to analyse ionic jump processes in crystalline and amorphous solids. Both high-resolution and time-domain 1 , 2 H , 6 , 7 Li , 19 F , 23 Na NMR helps throw light on the origins of rapid self-diffusion in materials being relevant for energy storage. It is well accepted that Li + ions are subjected to extremely slow exchange processes in compounds with strong site preferences. The loss of this site preference may lead to rapid cation diffusion, as is also well known for glassy materials. Further examples that benefit from this effect include, e.g. cation-mixed, high-entropy fluorides ( Ba, Ca) F 2 , Li-bearing garnets ( Li 7 La 3 Zr 2 O 12 ) and thiophosphates such as LiTi 2 ( PS 4 ) 3 . In non-equilibrium phases site disorder, polyhedra distortions, strain and the various types of defects will affect both the activation energy and the corresponding attempt frequencies. Whereas in ( Me, Ca ) F 2 ( Me = Ba , Pb ) cation mixing influences F anion dynamics, in Li 6 PS 5 X ( X = Br , Cl , I ) the potential landscape can be manipulated by anion site disorder. On the other hand, in the mixed conductor Li 4 + x Ti 5 O 12 cation-cation repulsions immediately lead to a boost in Li + diffusivity at the early stages of chemical lithiation. Finally, rapid diffusion is also expected for materials that are able to guide the ions along (macroscopic) pathways with confined (or low-dimensional) dimensions, as is the case in layer-structured RbSn 2 F 5 or MeSnF 4 . Diffusion on fractal systems complements this type of diffusion. This article is part of the Theo Murphy meeting issue ‘Understanding fast-ion conduction in solid electrolytes’.

Funder

Deutsche Forschungsgemeinschaft

H2020 Energy

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3