Affiliation:
1. Centre for Computational Science, University College London, Gordon Street, London WC1H 0AJ, UK
2. Institute for Informatics, Science Park 904, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
Abstract
Molecular dynamics simulation is now a widespread approach for understanding complex systems on the atomistic scale. It finds applications from physics and chemistry to engineering, life and medical science. In the last decade, the approach has begun to advance from being a computer-based means of rationalizing experimental observations to producing apparently credible predictions for a number of real-world applications within industrial sectors such as advanced materials and drug discovery. However, key aspects concerning the reproducibility of the method have not kept pace with the speed of its uptake in the scientific community. Here, we present a discussion of uncertainty quantification for molecular dynamics simulation designed to endow the method with better error estimates that will enable it to be used to report actionable results. The approach adopted is a standard one in the field of uncertainty quantification, namely using ensemble methods, in which a sufficiently large number of replicas are run concurrently, from which reliable statistics can be extracted. Indeed, because molecular dynamics is intrinsically chaotic, the need to use ensemble methods is fundamental and holds regardless of the duration of the simulations performed. We discuss the approach and illustrate it in a range of applications from materials science to ligand–protein binding free energy estimation.
This article is part of the theme issue ‘Reliability and reproducibility in computational science: implementing verification, validation and uncertainty quantification
in silico
’.
Funder
Medical Research Council
Engineering and Physical Sciences Research Council
European Commission
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献