Improved identification of abdominal aortic aneurysm using the Kernelized Expectation Maximization algorithm

Author:

Deidda Daniel1ORCID,Akerele Mercy I.23,Aykroyd Robert G.4,Dweck Marc R.56,Ferreira Kelley1,Forsythe Rachael O.56,Heetun Warda1,Newby David E.56,Syed Maaz56,Tsoumpas Charalampos2ORCID

Affiliation:

1. National Physical Laboratory, Teddington, UK

2. Biomedical Imaging Science Department, University of Leeds, Leeds, UK

3. Department of Radiology, Weill Cornell Medicine, New York, NY, USA

4. Department of Statistics, University of Leeds, Leeds, UK

5. Edinburgh Imaging Facility, Queen’s Medical Research Institute, Edinburgh, UK

6. British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK

Abstract

Abdominal aortic aneurysm (AAA) monitoring and risk of rupture is currently assumed to be correlated with the aneurysm diameter. Aneurysm growth, however, has been demonstrated to be unpredictable. Using PET to measure uptake of [ 18 F]-NaF in calcified lesions of the abdominal aorta has been shown to be useful for identifying AAA and to predict its growth. The PET low spatial resolution, however, can affect the accuracy of the diagnosis. Advanced edge-preserving reconstruction algorithms can overcome this issue. The kernel method has been demonstrated to provide noise suppression while retaining emission and edge information. Nevertheless, these findings were obtained using simulations, phantoms and a limited amount of patient data. In this study, the authors aim to investigate the usefulness of the anatomically guided kernelized expectation maximization (KEM) and the hybrid KEM (HKEM) methods and to judge the statistical significance of the related improvements. Sixty-one datasets of patients with AAA and 11 from control patients were reconstructed with ordered subsets expectation maximization (OSEM), HKEM and KEM and the analysis was carried out using the target-to-blood-pool ratio, and a series of statistical tests. The results show that all algorithms have similar diagnostic power, but HKEM and KEM can significantly recover uptake of lesions and improve the accuracy of the diagnosis by up to 22% compared to OSEM. The same improvements are likely to be obtained in clinical applications based on the quantification of small lesions, like for example cancer. This article is part of the theme issue ‘Synergistic tomographic image reconstruction: part 1’.

Funder

National Physical Laboratory

Chief Scientist Office

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3