Bayesian emulation and history matching of JUNE

Author:

Vernon I.12ORCID,Owen J.12,Aylett-Bullock J.13ORCID,Cuesta-Lazaro C.14,Frawley J.15,Quera-Bofarull A.14ORCID,Sedgewick A.16,Shi D.14,Truong H.13ORCID,Turner M.15,Walker J.13,Caulfield T.7,Fong K.89,Krauss F.13ORCID

Affiliation:

1. Institute for Data Science, Durham University, Durham DH13LE, UK

2. Department of Mathematical Sciences, Durham University, Durham DH13LE, UK

3. Institute for Particle Physics Phenomenology, Durham University, Durham DH13LE, UK

4. Institute for Computational Cosmology, Durham University, Durham DH13LE, UK

5. Advanced Research Computing, Durham University, Durham DH13LE, UK

6. Centre for Extragalactic Astronomy, Durham University, Durham DH13LE, UK

7. Department of Computer Science, Durham University, Durham DH13LE, UK

8. Department of Science, Technology, Engineering and Public Policy, University College London, London WC1E6BT, UK

9. Department of Anaesthesia, University College London Hospital, London NW12BU, UK

Abstract

We analyze JUNE : a detailed model of COVID-19 transmission with high spatial and demographic resolution, developed as part of the RAMP initiative. JUNE  requires substantial computational resources to evaluate, making model calibration and general uncertainty analysis extremely challenging. We describe and employ the uncertainty quantification approaches of Bayes linear emulation and history matching to mimic JUNE  and to perform a global parameter search, hence identifying regions of parameter space that produce acceptable matches to observed data, and demonstrating the capability of such methods. This article is part of the theme issue ‘Technical challenges of modelling real-life epidemics and examples of overcoming these’.

Funder

Science and Technology Facilities Council

Wellcome

UK Research and Innovation

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3