Fault logic and data-driven model for operation reliability analysis of the flap deflection angle

Author:

Liu Wan-Yi1ORCID,Feng Yun-Wen1ORCID,Teng Da1ORCID,Lu Cheng1ORCID,Chen Jun-Yu1ORCID

Affiliation:

1. School of Aeronautics, Northwestern Polytechnical University,Xi'an 710072, People's Republic of China

Abstract

To effectively perform the reliability analysis of the flap deflection angle, the reliability analysis framework is developed by introducing fault logic and a data-driven model. Herein, the fault logic analysis is used to study the fault mechanism and filter out the characteristic fault parameters that can be used to collect input data for data-driven modelling; the data-driven modelling is employed to establish a reliability analysis model with a small amount of input data. Under this proposed framework, the improved dung beetle optimization algorithm for back propagation (IDBO-BP) method is developed to perform the reliability modelling of the flap deflection angle. To validate the effectiveness of the proposed framework, we study the fault logic of flap symmetry and establish a surrogate model of flap deflection based on the fault parameters and the IDBO-BP algorithm. According to the predicted results of the flap deflection angle, the reliability model based on the fault mechanism can reflect the actual flap motion. At the same time, the proposed IDBO-BP algorithm has excellent modelling and simulation property by comparing with other optimization algorithms. Thus, the efforts of this study provide a new solution to the problem of reliable analysis with uncertain fault parameters. This article is part of the theme issue 'Physics-informed machine learning and its structural integrity applications (Part 1)'.

Funder

Fund of Shanghai Engineering Research Center of Civil Aircraft Health Monitoring

National Natural Science Foundation of China

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3