Using machine learning to identify novel hydroclimate states

Author:

Marvel Kate12ORCID,Cook Benjamin I.2

Affiliation:

1. Columbia University Center for Climate Systems Research, New York, NY, USA

2. NASA Goddard Institute for Space Studies, New York, NY, USA

Abstract

Anthropogenic climate change is expected to alter drought risk in the future. However, droughts are not uncommon or unprecedented, as documented in tree-ring-based reconstructions of the summer average Palmer drought severity index (PDSI). Using an unsupervised machine-learning method trained on these reconstructions of pre-industrial climate, we identify outliers: years in which the spatial pattern of PDSI is unusual relative to ‘normal' variability. We show that in many regions, outliers are more frequently identified in the twentieth and twenty-first centuries. This trend is more pronounced when the regional drought atlases are combined into a single global dataset. By definition, outlier patterns at the 10% level are expected to occur once per decade, but from 1950 to 2000 more than 6 years per decade are identified as outliers in the global drought atlas (GDA). Extending the GDA through 2020 using an observational dataset suggests that anomalous global drought conditions are present in 80% of years in the twenty-first century. Our results indicate, without recourse to climate models, that the world is more frequently experiencing drought conditions that are highly unusual in the context of past natural climate variability.This article is part of the Royal Society Science+ meeting issue ‘Drought risk in the Anthropocene’.

Funder

NOAA MAPP

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Extreme events in the multi-proxy South Pacific drought atlas;Climatic Change;2023-07-24

2. Drought risk in the Anthropocene;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2022-10-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3