Simulations of molecular photodynamics in long timescales

Author:

Mukherjee Saikat1ORCID,Pinheiro Max1ORCID,Demoulin Baptiste1ORCID,Barbatti Mario12ORCID

Affiliation:

1. Aix Marseille University, CNRS, ICR, Marseille, France

2. Institut Universitaire de France, 75231 Paris, France

Abstract

Nonadiabatic dynamics simulations in the long timescale (much longer than 10 ps) are the next challenge in computational photochemistry. This paper delimits the scope of what we expect from methods to run such simulations: they should work in full nuclear dimensionality, be general enough to tackle any type of molecule and not require unrealistic computational resources. We examine the main methodological challenges we should venture to advance the field, including the computational costs of the electronic structure calculations, stability of the integration methods, accuracy of the nonadiabatic dynamics algorithms and software optimization. Based on simulations designed to shed light on each of these issues, we show how machine learning may be a crucial element for long time-scale dynamics, either as a surrogate for electronic structure calculations or aiding the parameterization of model Hamiltonians. We show that conventional methods for integrating classical equations should be adequate to extended simulations up to 1 ns and that surface hopping agrees semiquantitatively with wave packet propagation in the weak-coupling regime. We also describe our optimization of the Newton-X program to reduce computational overheads in data processing and storage. This article is part of the theme issue ‘Chemistry without the Born–Oppenheimer approximation’.

Funder

H2020 European Research Council

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3