Which GAN? A comparative study of generative adversarial network-based fast MRI reconstruction

Author:

Lv Jun1,Zhu Jin2,Yang Guang34ORCID

Affiliation:

1. School of Computer and Control Engineering, Yantai University, Yantai, People’s Republic of China

2. Department of Computer Science and Technology, University of Cambridge, Cambridge CB3 0FD, UK

3. Cardiovascular Research Centre, Royal Brompton Hospital, SW3 6NP London, UK

4. National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK

Abstract

Fast magnetic resonance imaging (MRI) is crucial for clinical applications that can alleviate motion artefacts and increase patient throughput. K -space undersampling is an obvious approach to accelerate MR acquisition. However, undersampling of k -space data can result in blurring and aliasing artefacts for the reconstructed images. Recently, several studies have been proposed to use deep learning-based data-driven models for MRI reconstruction and have obtained promising results. However, the comparison of these methods remains limited because the models have not been trained on the same datasets and the validation strategies may be different. The purpose of this work is to conduct a comparative study to investigate the generative adversarial network (GAN)-based models for MRI reconstruction. We reimplemented and benchmarked four widely used GAN-based architectures including DAGAN, ReconGAN, RefineGAN and KIGAN. These four frameworks were trained and tested on brain, knee and liver MRI images using twofold, fourfold and sixfold accelerations, respectively, with a random undersampling mask. Both quantitative evaluations and qualitative visualization have shown that the RefineGAN method has achieved superior performance in reconstruction with better accuracy and perceptual quality compared to other GAN-based methods. This article is part of the theme issue ‘Synergistic tomographic image reconstruction: part 1’.

Funder

H2020 European Research Council

National Natural Science Foundation of China

British Heart Foundation

Innovative Medicines Initiative

Hangzhou Economic and Technological Development Area Strategical Grant

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3