A generalized Stokes system with a non-smooth slip boundary condition

Author:

Zhao Jing1,Migórski Stanislaw12ORCID,Dudek Sylwia3

Affiliation:

1. College of Sciences, Beibu Gulf University, Qinzhou, Guangxi 535000, People’s Republic of China

2. Faculty of Mathematics and Computer Science, Chair of Optimization and Control, Jagiellonian University in Krakow, ul. Lojasiewicza 6, 30348 Krakow, Poland

3. Faculty of Computer Science and Telecommunications, Department of Applied Mathematics, Krakow University of Technology, ul. Warszawska 24, 31155 Krakow, Poland

Abstract

A class of quasi variational–hemivariational inequalities in reflexive Banach spaces is studied. The inequalities contain a convex potential, a locally Lipschitz superpotential and an implicit obstacle set of constraints. Results on the well-posedness including existence, uniqueness, dependence of solution on the data and the compactness of the solution set in the strong topology are established. The applicability of the results is illustrated by the steady-state generalized Stokes model of a generalized Newtonian incompressible fluid with a non-monotone slip boundary condition. This article is part of the theme issue ‘Non-smooth variational problems and applications’.

Funder

European Commission

Ministerstwo Nauki i Szkolnictwa Wyższego

Beibu Gulf University

National Science Foundation of Guangxi

Narodowe Centrum Nauki

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference25 articles.

1. A Class of Variational–Hemivariational Inequalities for Bingham Type Fluids

2. Analysis of Stokes system with solution-dependent subdifferential boundary conditions;Zhao J;Fixed Point Theory Algorithms Sci. Eng.,2021

3. An Introduction to Nonlinear Analysis: Theory

4. Denkowski Z, Migórski S, Papageorgiou NS. 2003 An introduction to nonlinear analysis: applications. Boston, Dordrecht, London, New York: Kluwer Academic/Plenum Publishers.

5. Nonlinear Inclusions and Hemivariational Inequalities

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3