TransCrack: revisiting fine-grained road crack detection with a transformer design

Author:

Lin Chunmian123ORCID,Tian Daxin123ORCID,Duan Xuting123,Zhou Jianshan123

Affiliation:

1. School of Transportation Science and Engineering, Beihang University, Beijing, People's Republic of China

2. Beijing Key Laboratory for Cooperative Vehicle Infrastructure Systems and Safety Control, Beihang University, Beijing, People's Republic of China

3. State Key Lab of Intelligent Transportation System, Beihang University, Beijing, People's Republic of China

Abstract

Prior convolution-based road crack detectors typically learn more abstract visual representation with increasing receptive field via an encoder–decoder architecture. Despite the promising accuracy, progressive spatial resolution reduction causes semantic feature blurring, leading to coarse and incontiguous distress detection. To these ends, an alternative sequence-to-sequence perspective with a transformer network termed TransCrack is introduced for road crack detection. Specifically, an image is decomposed into a grid of fixed-size crack patches, which is flattened with position embedding into a sequence. We further propose a pure transformer-based encoder with multi-head reduced self-attention modules and feed-forward networks for explicitly modelling long-range dependencies from the sequential input in a global receptive field. More importantly, a simple decoder with cross-layer aggregation architecture is developed to incorporate global with local attentions across different regions for detailed feature recovery and pixel-wise crack mask prediction. Empirical studies are conducted on three publicly available damage detection benchmarks. The proposed TransCrack achieves a state-of-the-art performance over all counterparts by a substantialmargin, and qualitative results further demonstrate its superiority in contiguous crack recognition and fine-grained profile extraction. This article is part of the theme issue ‘Artificial intelligence in failure analysis of transportation infrastructure and materials’.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3