Affiliation:
1. Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
2. The Center for Social Data Science, University of Copenhagen, Copenhagen, Denmark
3. Statistics Denmark, Copenhagen, Denmark
Abstract
Travel restrictions have proven to be an effective strategy to control the spread of the COVID-19 epidemics, in part because they help delay disease propagation across territories. The question, however, as to how different types of travel behaviour, from commuting to holiday-related travel, contribute to the spread of infectious diseases remains open. Here, we address this issue by using factorization techniques to decompose the temporal network describing mobility flows throughout 2020 into interpretable components. Our results are based on two mobility datasets: the first is gathered from Danish mobile network operators; the second originates from the Facebook Data-For-Good project. We find that mobility patterns can be described as the aggregation of three mobility network components roughly corresponding to travel during workdays, weekends and holidays, respectively. We show that, across datasets, in periods of strict travel restrictions the component corresponding to workday travel decreases dramatically. Instead, the weekend component, increases. Finally, we study how each type of mobility (workday, weekend and holiday) contributes to epidemics spreading, by measuring how the effective distance, which quantifies how quickly a disease can travel between any two municipalities, changes across network components.
This article is part of the theme issue ‘Data science approaches to infectious disease surveillance’.
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献