Deep bootstrap for Bayesian inference

Author:

Nie Lizhen1,Ročková Veronika2ORCID

Affiliation:

1. University of Chicago Division of the Physical Sciences, Chicago, IL, USA

2. University of Chicago Booth School of Business, Chicago, IL, USA

Abstract

For a Bayesian, the task to define the likelihood can be as perplexing as the task to define the prior. We focus on situations when the parameter of interest has been emancipated from the likelihood and is linked to data directly through a loss function. We survey existing work on both Bayesian parametric inference with Gibbs posteriors and Bayesian non-parametric inference. We then highlight recent bootstrap computational approaches to approximating loss-driven posteriors. In particular, we focus on implicit bootstrap distributions defined through an underlying push-forward mapping. We investigate independent, identically distributed (iid) samplers from approximate posteriors that pass random bootstrap weights through a trained generative network. After training the deep-learning mapping, the simulation cost of such iid samplers is negligible. We compare the performance of these deep bootstrap samplers with exact bootstrap as well as MCMC on several examples (including support vector machines or quantile regression). We also provide theoretical insights into bootstrap posteriors by drawing upon connections to model mis-specification. This article is part of the theme issue ‘Bayesian inference: challenges, perspectives, and prospects’.

Funder

National Science Foundation

James S. Kemper Faculty Fund at the Booth School of Business

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A special issue on Bayesian inference: challenges, perspectives and prospects;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-03-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3