Transition to chaos and modal structure of magnetized Taylor–Couette flow

Author:

Guseva A.1ORCID,Tobias S. M.1

Affiliation:

1. Department of Applied Mathematics, University of Leeds, Leeds, West Yorkshire, UK

Abstract

Taylor–Couette flow (TCF) is often used as a simplified model for complex rotating flows in the interior of stars and accretion discs. The flow dynamics in these objects is influenced by magnetic fields. For example, quasi-Keplerian flows in Taylor–Couette geometry become unstable to a travelling or standing wave in an external magnetic field if the fluid is conducting; there is an instability even when the flow is hydrodynamically stable. This magnetorotational instability leads to the development of chaotic states and, eventually, turbulence, when the cylinder rotation is sufficiently fast. The transition to turbulence in this flow can be complex, with the coexistence of parameter regions with spatio-temporal chaos and regions with quasi-periodic behaviour, involving one or two additional modulating frequencies. Although the unstable modes of a periodic flow can be identified with Floquet analysis, here we adopt a more flexible equation-free data-driven approach. We analyse the data from the transition to chaos in the magnetized TCF and identify the flow structures related to the modulating frequencies with dynamic mode decomposition; this method is based on approximating nonlinear dynamics with a linear infinite-dimensional Koopman operator. With the use of these structures, one can construct a nonlinear reduced model for the transition. This article is part of the theme issue ‘Taylor–Couette and related flows on the centennial of Taylor’s seminal Philosophical Transactions paper (part 1)’.

Funder

H2020 Marie Skłodowska-Curie Actions

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Routes to turbulence in Taylor–Couette flow;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-03-13

2. Taylor–Couette and related flows on the centennial of Taylor’s seminalPhilosophical Transactionspaper: part 2;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-03-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3