SiV 0 centres in diamond: effect of isotopic substitution in carbon and silicon

Author:

Boldyrev Kirill N.1ORCID,Sektarov Eduard S.12ORCID,Bolshakov Andrey P.3ORCID,Ralchenko Victor G.3ORCID,Sedov Vadim S.3ORCID

Affiliation:

1. Institute of Spectroscopy of the Russian Academy of Sciences, Troitsk, Moscow 108840, Russia

2. Higher School of Economics, Moscow 101000, Russia

3. Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia

Abstract

The neutrally charged silicon-vacancy defect (SiV 0 ) is a colour centre in diamond with spin S = 1, a zero-phonon line (ZPL) at 946 nm and long spin coherence, which makes it a promising candidate for quantum network applications. For the proper performance of such colour centres, all of them must have identical optical characteristics. However, in practice, there are factors that influence each individual centre. One of these factors is non-uniform isotope composition for both carbon atoms in diamond lattice and silicon atoms of dopant. In this work, we studied the isotopic shifts of SiV 0 centres for CVD-grown epitaxial layers of isotopically enriched 12 C and 13 C diamonds, as well as for diamond with natural isotope composition but doped only with one isotope of Si ( 28 Si, 29 Si and 30 Si). The detected shift was 1.60 meV for 12 C/ 13 C couple and 0.33 meV for 28 Si/ 29 Si and 29 Si/ 30 Si couples, which are close to the previously obtained values of the isotopic shift for the negatively charged silicon vacancy (SiV ), which indicates a similar model of interaction with the environment for these two charge states of the SiV colour centres. This article is part of the Theo Murphy meeting issue 'Diamond for quantum applications'.

Funder

Russian Science Foundation

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A special issue preface: diamond for quantum applications;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-12-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3