Combining data assimilation and machine learning to infer unresolved scale parametrization

Author:

Brajard Julien12ORCID,Carrassi Alberto34,Bocquet Marc5,Bertino Laurent1

Affiliation:

1. Nansen Center (NERSC), 5006 Bergen, Norway

2. Sorbonne University, Paris, France

3. Department of Meteorology, University of Reading and NCEO, Reading, UK

4. Mathematical Institute, University of Utrecht, Utrecht, The Netherlands

5. CEREA, joint laboratory École des Ponts ParisTech and EDF R&D, Université Paris-Est, Paris, France

Abstract

In recent years, machine learning (ML) has been proposed to devise data-driven parametrizations of unresolved processes in dynamical numerical models. In most cases, the ML training leverages high-resolution simulations to provide a dense, noiseless target state. Our goal is to go beyond the use of high-resolution simulations and train ML-based parametrization using direct data, in the realistic scenario of noisy and sparse observations. The algorithm proposed in this work is a two-step process. First, data assimilation (DA) techniques are applied to estimate the full state of the system from a truncated model. The unresolved part of the truncated model is viewed as a model error in the DA system. In a second step, ML is used to emulate the unresolved part, a predictor of model error given the state of the system. Finally, the ML-based parametrization model is added to the physical core truncated model to produce a hybrid model. The DA component of the proposed method relies on an ensemble Kalman filter while the ML parametrization is represented by a neural network. The approach is applied to the two-scale Lorenz model and to MAOOAM, a reduced-order coupled ocean-atmosphere model. We show that in both cases, the hybrid model yields forecasts with better skill than the truncated model. Moreover, the attractor of the system is significantly better represented by the hybrid model than by the truncated model. This article is part of the theme issue ‘Machine learning for weather and climate modelling’.

Funder

Natural Environment Research Council

Norges Forskningsråd

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3