A computational framework for crack propagation in spatially heterogeneous materials

Author:

Lewandowski Karol1ORCID,Kaczmarczyk Łukasz1ORCID,Athanasiadis Ignatios1ORCID,Marshall John F.2,Pearce Chris J.1ORCID

Affiliation:

1. Glasgow Computational Engineering Centre, The James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK

2. Weipers Centre Equine Hospital, School of Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK

Abstract

This paper presents a mathematical formulation and numerical modelling framework for brittle crack propagation in heterogeneous elastic solids. Such materials are present in both natural and engineered scenarios. The formulation is developed in the framework of configurational mechanics and solved numerically using the finite-element method. We show the methodology previously established for homogeneous materials without the need for any further assumptions. The proposed model is based on the assumption of maximal dissipation of energy and uses the Griffith criterion; we show that this is sufficient to predict crack propagation in brittle heterogeneous materials, with spatially varying Young’s modulus and fracture energy. Furthermore, we show that the crack path trajectory orientates itself such that it is always subject to Mode-I. The configurational forces and fracture energy release rate are both expressed exclusively in terms of nodal quantities, avoiding the need for post-processing and enabling a fully implicit formulation for modelling the evolving crack front and creation of new crack surfaces. The proposed formulation is verified and validated by comparing numerical results with both analytical solutions and experimental results. Both the predicted crack path and load–displacement response show very good agreement with experiments where the crack path was independent of material heterogeneity for those cases. Finally, the model is successfully used to consider the real and challenging scenario of fracture of an equine bone, with spatially varying material properties obtained from CT scanning. This article is part of a discussion meeting issue ‘A cracking approach to inventing new tough materials: fracture stranger than friction’.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A computational framework for crack propagation along contact interfaces and surfaces under load;Computer Methods in Applied Mechanics and Engineering;2023-09

2. Mathematical analysis on the propagation of Griffith crack in an initially stressed strip subjected to punch pressure;Mechanics Based Design of Structures and Machines;2023-06-22

3. From computed tomography to finite element space: A unified bone material mapping strategy;Clinical Biomechanics;2022-07

4. A cracking approach to inventing new tough materials: fracture stranger than friction;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2021-06-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3