Affiliation:
1. Laboratory of Multi-Scale Mathematical Modeling, Department of Theoretical and Mathematical Physics, Ural Federal University, Ekaterinburg 620000, Russian Federation
Abstract
The issue is devoted to theoretical, computer and experimental studies of internal heterogeneous patterns, their morphology and evolution in various soft physical systems—organic and inorganic materials (e.g. alloys, polymers, cell cultures, biological tissues as well as metastable and composite materials). The importance of these studies is determined by the significant role of internal structures on the macroscopic properties and behaviour of natural and manufactured tissues and materials. Modern methods of computer modelling, statistical physics, heat and mass transfer, statistical hydrodynamics, nonlinear dynamics and experimental methods are presented and discussed. Non-equilibrium patterns which appear during macroscopic transport and hydrodynamic flow, chemical reactions, external physical fields (magnetic, electrical, thermal and hydrodynamic) and the impact of external noise on pattern evolution are the foci of this issue. Special attention is paid to pattern formation in biological systems (such as drug transport, hydrodynamic patterns in blood and pattern dynamics in protein and insulin crystals) and to the development of a scientific background for progressive methods of cancer and insult therapy (magnetic hyperthermia for cancer therapy; magnetically induced drug delivery in thrombosed blood vessels). The present issue includes works on pattern growth and their evolution in systems with complex internal structures, including stochastic dynamics, and the influence of internal structures on the external static, dynamic magnetic and mechanical properties of these systems.
This article is part of the theme issue ‘Patterns in soft and biological matters’.
Funder
Russian Science Foundation
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献