Patterns in soft and biological matters

Author:

Alexandrov Dmitri V.1ORCID,Zubarev Andrey Yu.1ORCID

Affiliation:

1. Laboratory of Multi-Scale Mathematical Modeling, Department of Theoretical and Mathematical Physics, Ural Federal University, Ekaterinburg 620000, Russian Federation

Abstract

The issue is devoted to theoretical, computer and experimental studies of internal heterogeneous patterns, their morphology and evolution in various soft physical systems—organic and inorganic materials (e.g. alloys, polymers, cell cultures, biological tissues as well as metastable and composite materials). The importance of these studies is determined by the significant role of internal structures on the macroscopic properties and behaviour of natural and manufactured tissues and materials. Modern methods of computer modelling, statistical physics, heat and mass transfer, statistical hydrodynamics, nonlinear dynamics and experimental methods are presented and discussed. Non-equilibrium patterns which appear during macroscopic transport and hydrodynamic flow, chemical reactions, external physical fields (magnetic, electrical, thermal and hydrodynamic) and the impact of external noise on pattern evolution are the foci of this issue. Special attention is paid to pattern formation in biological systems (such as drug transport, hydrodynamic patterns in blood and pattern dynamics in protein and insulin crystals) and to the development of a scientific background for progressive methods of cancer and insult therapy (magnetic hyperthermia for cancer therapy; magnetically induced drug delivery in thrombosed blood vessels). The present issue includes works on pattern growth and their evolution in systems with complex internal structures, including stochastic dynamics, and the influence of internal structures on the external static, dynamic magnetic and mechanical properties of these systems. This article is part of the theme issue ‘Patterns in soft and biological matters’.

Funder

Russian Science Foundation

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3