On geometrical aspects of the graph approach to contextuality

Author:

Amaral Barbara12345ORCID,Terra Cunha Marcelo16ORCID

Affiliation:

1. Departamento de Matemática, Universidade Federal de Minas Gerais, Caixa Postal 702, 30123-970, Belo Horizonte, Minas Gerais, Brazil

2. Departamento de Matemática, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil

3. Departamento de Física e Matemática, CAP - Universidade Federal de São João del-Rei, 36.420-000, Ouro Branco, Minas Gerais, Brazil

4. International Institute of Physics, Federal University of Rio Grande do Norte, 59078-970, PO Box 1613, Natal, Brazil

5. Department of Mathematical Physics, Institute of Physics, University of São Paulo, R. do Matão 1371, São Paulo 05508-090, Brazil

6. Departamento de Matemática Aplicada, IMECC-Unicamp, 13084-970, Campinas, São Paulo, Brazil

Abstract

The connection between contextuality and graph theory has paved the way for numerous advancements in the field. One notable development is the realization that sets of probability distributions in many contextuality scenarios can be effectively described using well-established convex sets from graph theory. This geometric approach allows for a beautiful characterization of these sets. The application of geometry is not limited to the description of contextuality sets alone; it also plays a crucial role in defining contextuality quantifiers based on geometric distances. These quantifiers are particularly significant in the context of the resource theory of contextuality, which emerged following the recognition of contextuality as a valuable resource for quantum computation. In this paper, we provide a comprehensive review of the geometric aspects of contextuality. Additionally, we use this geometry to define several quantifiers, offering the advantage of applicability to other approaches to contextuality where previously defined quantifiers may not be suitable. This article is part of the theme issue ‘Quantum contextuality, causality and freedom of choice’.

Funder

Instituto Serrapilheira

Fundação de Amparo à Pesquisa do Estado de São Paulo

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

The Royal Society

Reference52 articles.

1. On the Problem of Hidden Variables in Quantum Mechanics

2. The problem of hidden variables in quantum mechanics;Kochen S;J. Math. Mech.,1967

3. DIE LOGIK NICHT GLEICHZEITIG ENTSC HEIDBARER AUSSAGEN

4. Amaral B. 2014 The Exclusivity principle and the set o quantum distributions. PhD thesis Universidade Federal de Minas Gerais.

5. Exclusivity principle forbids sets of correlations larger than the quantum set

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3