Data-driven based fracture prediction of notched components

Author:

Talebi Hossein1ORCID,Bahrami Bahador1ORCID,Daneshfar Mohammad1ORCID,Bagherifard Sara2,Ayatollahi Majid R.1

Affiliation:

1. Fatigue and Fracture Research Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical Engineering, Iran University of Science and Technology,Narmak 16846, Tehran, Iran

2. Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy

Abstract

A data-driven approach is developed to predict the fracture load of a notched component. To do so, more than 1500 fracture tests (507 unique experimental data points) on mixed-mode I/II loading of notched brittle samples were collected from the literature. After pre-processing the raw data, six features of maximum tangential stress ( σ θ θ max ) , maximum tangential stress angle ( θ σ θ θ max ) , ultimate tensile strength ( σ u ) , fracture toughness ( K I c ) , notch opening angle ( 2 α ) and notch tip radius ( ρ ) were selected by using the neighbourhood component analysis (NCA) technique. To predict the fracture load of various types of notched samples, several machine learning (ML) models were trained using the methods of Gaussian process regression (GPR), decision tree ensemble and artificial neural network (ANN). Then, the Bayesian optimization algorithm was applied to find the optimum hyperparameters for each model. Lastly, the performance of the models in predicting fracture load was evaluated against 124 unseen data points. The results revealed the high potential of data-driven methods for assessing the fracture load of notched brittle components with acceptable precisions of 92%, 89% and 88% accuracy, respectively, for GPR, decision tree ensemble and ANN models. The superior performance of the GPR method can be attributed to its ability to capture complex nonlinear relationships in the data while providing reliable uncertainty estimates. Furthermore, thanks to its interpolation capabilities, GPR is able to seamlessly fill the gaps between data points, resulting in more comprehensive and precise predictions across the entire range of input data. Additionally, the presented models were capable of predicting the fracture load of VO-shaped notched samples with acceptable accuracy, though this type of notch was not used in the model training process. This article is part of the theme issue 'Physics-informed machine learning and its structural integrity applications (Part 2)'.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3