An Ogden-like formulation incorporating phase-field fracture in elastomers: from brittle to pseudo-ductile failures

Author:

Ciambella Jacopo1ORCID,Lancioni Giovanni2,Stortini Nico3

Affiliation:

1. Department of Structural and Geotechnical Engineering, Sapienza University of Rome, Rome, Italy

2. Department of Mechanics and Aeronautics, Sapienza University of Rome, Rome, Italy

3. Department of Civil and Building Engineering and Architecture, Polytechnic University of Marche, Ancona, Italy

Abstract

Over the past 50 years the Ogden model has been widely used in material modelling owing to its ability to match accurately the experimental data on elastomers at large strain, as well as its mathematical properties, such as polyconvexity. In this paper, these characteristics are exploited to formulate a finite-strain model that incorporates, through the phase-field approach recently proposed by Wu (Wu 2017 J. Mech. Phys. Solids 103 , 72–99) for small strains, a cohesive damage mechanism which leads to the progressive degradation of the material stiffness and to failure under tension. By properly tailoring the constitutive parameters, the model is capable of encompassing a wide range of effects, from brittle to pseudo-ductile failure modes. A plane stress problem is formulated to test the model against experiments on double-network elastomers, which display a pseudo-ductile damage behaviour at large strain, and on conventional rubber compounds with brittle failure. The results show that the proposed model is applicable to fracture coalescence and propagation in a wide range of materials. This article is part of the theme issue ‘The Ogden model of rubber mechanics: Fifty years of impact on nonlinear elasticity’.

Funder

Sapienza Università di Roma

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient BFGS quasi-Newton method for large deformation phase-field modeling of fracture in hyperelastic materials;Engineering Fracture Mechanics;2024-09

2. The Ogden model of rubber mechanics: 50 years of impact on nonlinear elasticity;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2022-08-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3