The emergence of spatial patterns for compartmental reaction kinetics coupled by two bulk diffusing species with comparable diffusivities

Author:

Pelz Merlin1,Ward Michael J.1ORCID

Affiliation:

1. Department of Mathematics, UBC, Vancouver, British Columbia, Canada

Abstract

Originating from the pioneering study of Alan Turing, the bifurcation analysis predicting spatial pattern formation from a spatially uniform state for diffusing morphogens or chemical species that interact through nonlinear reactions is a central problem in many chemical and biological systems. From a mathematical viewpoint, one key challenge with this theory for two component systems is that stable spatial patterns can typically only occur from a spatially uniform state when a slowly diffusing ‘activator’ species reacts with a much faster diffusing ‘inhibitor’ species. However, from a modelling perspective, this large diffusivity ratio requirement for pattern formation is often unrealistic in biological settings since different molecules tend to diffuse with similar rates in extracellular spaces. As a result, one key long-standing question is how to robustly obtain pattern formation in the biologically realistic case where the time scales for diffusion of the interacting species are comparable. For a coupled one-dimensional bulk-compartment theoretical model, we investigate the emergence of spatial patterns for the scenario where two bulk diffusing species with comparable diffusivities are coupled to nonlinear reactions that occur only in localized ‘compartments’, such as on the boundaries of a one-dimensional domain. The exchange between the bulk medium and the spatially localized compartments is modelled by a Robin boundary condition with certain binding rates. As regulated by these binding rates, we show for various specific nonlinearities that our one-dimensional coupled PDE-ODE model admits symmetry-breaking bifurcations, leading to linearly stable asymmetric steady-state patterns, even when the bulk diffusing species have equal diffusivities. Depending on the form of the nonlinear kinetics, oscillatory instabilities can also be triggered. Moreover, the analysis is extended to treat a periodic chain of compartments. This article is part of the theme issue ‘New trends in pattern formation and nonlinear dynamics of extended systems’.

Funder

NSERC Discovery Grant

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3