Rapid eutectic growth: from rod growth to diffusionless solidification

Author:

Galenko Peter K.12ORCID,Xu Junfeng13ORCID

Affiliation:

1. Otto Schott Institute of Materials Research, Friedrich-Schiller-Universität Jena, 07743, Germany

2. Laboratory of Multi-scale Mathematical Modeling, Department of Theoretical and Mathematical Physics, Ural Federal University, 620000 Ekaterinburg, Russia

3. School of Materials and Chemical Engineering, Xi'an Technological University, 710021, People's Republic of China

Abstract

Numerous experimental data on the rapid solidification of eutectic systems exhibit the formation of metastable solid phases with the initial (nominal) chemical composition. This fact is explained by the suppression of eutectic decomposition due to diffusionless (chemically partitionless) solidification beginning at a high but finite growth velocity of crystals. In the present work, a model is suggested for the diffusionless growth to analyse the atomic diffusion in the rod eutectic couples growing into supercooled liquid. A simplified calculating method for the equation related to the Bessel function in the solution of the growth of rod eutectics is obtained. This method can also be used in the calculation of other rod eutectic growth models. This article is part of the theme issue ‘Transport phenomena in complex systems (part 2)’.

Funder

Science and Technology Program of Shaanxi Province

Foundation of Shaanxi Provincial Department of Education

German Space Center Space Management Foundation

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Off-Eutectic Growth Model for Solidifying Alloy from an Undercooled State;Crystals;2023-09-29

2. Global Instability of Rod Eutectic Growth in Directional Solidification;Crystals;2023-03-22

3. Numerical investigation of eutectic growth dynamics under convection by 3D phase-field method;Computers & Mathematics with Applications;2022-05

4. Transport phenomena in complex systems (part 2);Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2022-01-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3