High-cycle fatigue life prediction of L-PBF AlSi10Mg alloys: a domain knowledge-guided symbolic regression approach

Author:

Yu Huan1,Hu Yanan1ORCID,Kang Guozheng1,Peng Xin2,Chen Bingqing3,Wu Shengchuan12

Affiliation:

1. School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu 611756, People's Republic of China

2. State Key Laboratory of Rail Transit Vehicle System, Southwest Jiaotong University, Chengdu 610031, People's Republic of China

3. Bejing Institute of Aeronautical Materials, Beijing 100095,People's Republic of China

Abstract

The large scatter in high-cycle fatigue (HCF) life poses significant challenges to safe and reliable in-service assessment of additively manufactured metal components. Previous investigations have indicated that inherent manufacturing defects are a critical factor affecting the fatigue performance of the components, and the HCF life is significantly influenced by the geometric parameters of the critical defects inducing crack nucleation. Therefore, it is highly important to elucidate the correlation of the HCF life with the geometric parameters of critical defects. This study proposes a new fatigue life prediction model for laser additively manufactured AlSi10Mg alloys by including the combined effects of loading stress and defect geometries (size, location and morphology) in terms of domain knowledge-guided symbolic regression (SR). Domain knowledge is extracted from the semi-empirical Murakami, Z -parameter and X -parameter fatigue life models to establish the variable subtrees. The results show that compared with these semi-empirical models, the domain knowledge integration-based SR model has higher prediction accuracy and generalization ability. Moreover, compared with traditional ‘black box’ machine learning models, SR excels at balancing prediction accuracy and model interpretability, which provides useful insights into the relationship between fatigue life and defect geometries. This article is part of the theme issue 'Physics-informed machine learning and its structural integrity applications (Part 2)'.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Natural Science Foundation of Sichuan Province

Fundamental Research Funds for Central Universities

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3