Weak elastic energy of irregular curves

Author:

Mucci D.1ORCID,Saracco A.1ORCID

Affiliation:

1. Dipartimento di Scienze Matematiche, Fisiche ed Informatiche, Università di Parma, Parco Area delle Scienze 53/A, Parma I-43124, Italy

Abstract

A weak notion of elastic energy for (not necessarily regular) rectifiable curves in any space dimension is proposed. Ourp-energy is defined through a relaxation process, where a suitablep-rotation of inscribed polygons is adopted. The discretep-rotation we choose has a geometric flavour: a polygon is viewed as an approximation to a smooth curve, and hence its discrete curvature is spread out into a smooth density. For any exponentpgreater than 1, thep-energy is finite if and only if the arc-length parametrization of the curve has a second-order summability with the same growth exponent. In that case, moreover, the energy agrees with the natural extension of the integral of thepth power of the scalar curvature. Finally, a comparison with other definitions of discrete curvature is provided.This article is part of the theme issue ‘Foundational issues, analysis and geometry in continuum mechanics’.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference22 articles.

1. Euler L. 1744 Additamentum ‘De Curvis Elasticis’. In Methodus Inveniendi Lineas Curvas Maximi Minimive Proprietate Gaudentes . Lausanne Switzerland: Marcum-Michaelem Bousquet. Original notes by H. Linsenbarth in ‘Ostwald’s Klassiker der exakten Wissenschaften’ no. 175; translation and changes from the original German by Donald M. Brown.

2. Grundlehren der mathematischen Wissenschaften, vol. 310;Giaquinta M,1996

3. Love AEH. 1944 A treatise on the mathematical theory of elasticity, 4th edn. New York, NY: Dover Publications.

4. The influence of elasticity on analysis: The classic heritage

5. Evolution of Elastic Curves in $\Rn$: Existence and Computation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Foundational issues, analysis and geometry in continuum mechanics: introduction;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-11-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3