Dispersion and mixing dynamics of complex oil-in-water emulsions in Taylor–Couette flows

Author:

Panwar Vishal1ORCID,Vargas Cassandra N.2,Dutcher Cari S.12ORCID

Affiliation:

1. Department of Mechanical Engineering, University of Minnesota – Twin Cities, 111 Church Street Southeast, Minneapolis, MN 55455, USA

2. Department of Chemical Engineering and Materials Science, University of Minnesota – Twin Cities, 421 Washington Avenue Southeast, Minneapolis, MN 55455, USA

Abstract

The seminal study by G. I. Taylor (1923) has inspired generations of work in exploring and characterizing Taylor–Couette (TC) flow instabilities and laid the foundation for research of complex fluid systems requiring a controlled hydrodynamic environment. Here, TC flow with radial fluid injection is used to study the mixing dynamics of complex oil-in-water emulsions. Concentrated emulsion simulating oily bilgewater is radially injected into the annulus between rotating inner and outer cylinders, and the emulsion is allowed to disperse through the flow field. The resultant mixing dynamics are investigated, and effective intermixing coefficients are calculated through measured changes in the intensity of light reflected by the emulsion droplets in fresh and salty water. The impacts of the flow field and mixing conditions on the emulsion stability are tracked via changes in droplet size distribution (DSD), and the use of emulsified droplets as tracer particles is discussed in terms of changes in the dispersive Péclet, Capillary and Weber numbers. For oily wastewater systems, the formation of larger droplets is known to yield better separation during a water treatment process, and the final DSD observed here is found to be tunable based on salt concentration, observation time and mixing flow state in the TC cell. This article is part of the theme issue ‘Taylor–Couette and related flows on the centennial of Taylor’s seminal Philosophical Transactions paper (part 2)’.

Funder

National Science Foundation

U.S. Department of Defense

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference78 articles.

1. VIII. Stability of a viscous liquid contained between two rotating cylinders;Taylor GI;Phil. Trans. R. Soc. Lond. Ser. A Contain Pap. Math. Phys. Character.,2006

2. Transition in circular Couette flow

3. Waveforms in rotating Couette flow

4. The transition to wavy Taylor vortices

5. Taylor-Couette flow with periodically corotated and counterrotated cylinders

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Taylor–Couette and related flows on the centennial of Taylor’s seminalPhilosophical Transactionspaper: part 2;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-03-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3