Bayesian approaches to include real-world data in clinical studies

Author:

Müller P.1ORCID,Chandra N. K.2,Sarkar A.1

Affiliation:

1. Department of Statistics and Data Sciences, The University of Texas at Austin, 2317 Speedway D9800, Austin, TX 78712-1823, USA

2. Department of Mathematical Sciences, The University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080-3021, USA

Abstract

Randomized clinical trials have been the mainstay of clinical research, but are prohibitively expensive and subject to increasingly difficult patient recruitment. Recently, there is a movement to use real-world data (RWD) from electronic health records, patient registries, claims data and other sources in lieu of or supplementing controlled clinical trials. This process of combining information from diverse sources calls for inference under a Bayesian paradigm. We review some of the currently used methods and a novel non-parametric Bayesian (BNP) method. Carrying out the desired adjustment for differences in patient populations is naturally done with BNP priors that facilitate understanding of and adjustment for population heterogeneities across different data sources. We discuss the particular problem of using RWD to create a synthetic control arm to supplement single-arm treatment only studies. At the core of the proposed approach is the model-based adjustment to achieve equivalent patient populations in the current study and the (adjusted) RWD. This is implemented using common atoms mixture models. The structure of such models greatly simplifies inference. The adjustment for differences in the populations can be reduced to ratios of weights in such mixtures.This article is part of the theme issue ‘Bayesian inference: challenges, perspectives, and prospects’.

Funder

National Science Foundation

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3