The ergodicity solution of the cooperation puzzle

Author:

Peters Ole12ORCID,Adamou Alexander1ORCID

Affiliation:

1. London Mathematical Laboratory, 8 Margravine Gardens, London W6 8RH, UK

2. Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA

Abstract

When two entities cooperate by sharing resources, one relinquishes something of value to the other. This apparent altruism is frequently observed in nature. Why? Classical treatments assume circumstances where combining resources creates an immediate benefit, e.g. through complementarity or thresholds. Here we ask whether cooperation is predictable without such circumstances. We study a model in which resources self-multiply with fluctuations, a null model of a range of phenomena from viral spread to financial investment. Two fundamental growth rates exist: the ensemble-average growth rate, achieved by the average resources of a large population; and the time-average growth rate, achieved by individual resources over a long time. As a consequence of non-ergodicity, the latter is lower than the former by a term which depends on fluctuation size. Repeated pooling and sharing of resources reduces the effective size of fluctuations and increases the time-average growth rate, which approaches the ensemble-average growth rate in the many-cooperator limit. Therefore, cooperation is advantageous in our model for the simple reason that those who do it grow faster than those who do not. We offer this as a candidate explanation for observed cooperation in rudimentary environments, and as a behavioural baseline for cooperation more generally. This article is part of the theme issue ‘Emergent phenomena in complex physical and socio-technical systems: from cells to societies’.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cooperation in a non-ergodic world on a network - insurance and beyond;Chaos: An Interdisciplinary Journal of Nonlinear Science;2024-07-01

2. Information synergy maximizes the growth rate of heterogeneous groups;PNAS Nexus;2024-02-01

3. Human decision-making in a non-ergodic additive environment;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-10

4. In need-based sharing, sharing is more important than need;Evolution and Human Behavior;2023-09

5. Stable cooperation emerges in stochastic multiplicative growth;Physical Review E;2023-07-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3