Probing the stability landscape of cylindrical shells for buckling knockdown factors

Author:

Groh R. M. J.1ORCID,Pirrera A.1ORCID

Affiliation:

1. Bristol Composites Institute, Department of Aerospace Engineering, University of Bristol, Bristol BS8 1TR, UK

Abstract

The buckling response of axially compressed cylindrical shells is well known for its imperfection sensitivity. Mapping out a stability landscape by localized probing has recently been proposed as a rational means for establishing shell buckling knockdown factors. Probing using a point force directed radially inwards and perpendicular to the cylinder wall is based on the insight that a localized single dimple exists as an edge state in the basin boundary of the stable prebuckling equilibrium. Here, we extend the idea of probing to bi-directional inwards and outwards forces to trigger both single-dimple and double-dimple edge states. We identify key features of the ensuing probing stability landscape and generalize these to derive three design curves of varying conservatism that are a function of the non-dimensional Batdorf parameter only. Interestingly, the most conservative of the three knockdown curves bounds a large dataset of experimental buckling results from below, despite being derived from probing features of geometrically perfect cylinders. Overall, the three design curves permit a more nuanced design approach than legacy knockdown factors, as different levels of conservatism can be chosen based on expected manufacturing quality. For instance, the most and least conservative of the three design guidelines differ by a factor of 3 for the most slender cylinder geometries, and the associated reduction in safety factor has profound implications for efficient structural design. This article is part of the theme issue ‘Probing and dynamics of shock sensitive shells’.

Funder

Royal Academy of Engineering

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference67 articles.

1. Elastic stability of thin-walled cylindrical and conical shells under axial compression

2. V. On the general theory of elastic stability

3. The Buckling of Thin Cylindrical Shells Under Axial Compression

4. Koiter WT. 1963 The effect of axisymmetric imperfections on the buckling of cylindrical shells under axial compression . Technical report Lockheed Missiles and Space Company.

5. The Effect of General Imperfections on the Buckling of Cylindrical Shells

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3