The e-posterior

Author:

Grünwald Peter D.12ORCID

Affiliation:

1. Machine Learning Group, CWI, Amsterdam, The Netherlands

2. Mathematical Institute, Leiden University, Leiden, The Netherlands

Abstract

We develop a representation of a decision maker’s uncertainty based on e-variables. Like the Bayesian posterior, thise-posteriorallows for making predictions against arbitrary loss functions that may not be specified ex ante. Unlike the Bayesian posterior, it provides risk bounds that have frequentist validity irrespective of prior adequacy: if the e-collection (which plays a role analogous to the Bayesian prior) is chosen badly, the bounds get loose rather than wrong, makinge-posterior minimaxdecision rules safer than Bayesian ones. The resulting quasi-conditional paradigm is illustrated by re-interpreting a previous influential partial Bayes-frequentist unification,Kiefer–Berger–Brown–Wolpert conditional frequentist tests, in terms of e-posteriors.This article is part of the theme issue ‘Bayesian inference: challenges, perspectives, and prospects’.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference53 articles.

1. Bayesian Theory

2. Inconsistency of Bayesian Inference for Misspecified Linear Models, and a Proposal for Repairing It

3. Grünwald PD. 1999 Viewing all models as ‘probabilistic’. In Proc. of the Twelfth ACM Conf. on Computational Learning Theory (COLT’ 99) Santa Cruz CA July 7–9 pp. 171–182. ACM.

4. Oelrich O Ding S Magnusson M Vehtari A Villani M. 2020 When are Bayesian model probabilities overconfident? (http://arxiv.org/abs/2003.04026)

5. Frequentist coverage of adaptive nonparametric Bayesian credible sets;Szabó B;Ann. Stat.,2015

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The importance Markov chain;Stochastic Processes and their Applications;2024-05

2. E-values for k-Sample Tests with Exponential Families;Sankhya A;2024-01-24

3. Game-Theoretic Statistics and Safe Anytime-Valid Inference;Statistical Science;2023-11-01

4. Evidential Calibration of Confidence Intervals;The American Statistician;2023-06-26

5. A special issue on Bayesian inference: challenges, perspectives and prospects;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-03-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3