The added value of satellite observations of methane forunderstanding the contemporary methane budget

Author:

Palmer Paul I.12ORCID,Feng Liang12,Lunt Mark F.1,Parker Robert J.34,Bösch Hartmut34,Lan Xin5ORCID,Lorente Alba6,Borsdorff Tobias6

Affiliation:

1. School of GeoSciences, University of Edinburgh, Edinburgh, UK

2. National Centre for Earth Observation, University of Edinburgh, Edinburgh, UK

3. Department of Physics and Astronomy, University of Leicester, Leicester, UK

4. National Centre for Earth Observation, University of Leicester, Leicester, UK

5. NOAA Global Monitoring Laboratory, Boulder, CO, USA

6. SRON Netherlands Institute for Space Research, Utrecht, The Netherlands

Abstract

Surface observations have recorded large and incompletely understood changes to atmospheric methane (CH 4 ) this century. However, their ability to reveal the responsible surface sources and sinks is limited by their geographical distribution, which is biased towards the northern midlatitudes. Data from Earth-orbiting satellites designed specifically to measure atmospheric CH 4 have been available since 2009 with the launch of the Japanese Greenhouse gases Observing SATellite (GOSAT). We assess the added value of GOSAT to data collected by the US National Oceanic and Atmospheric Administration (NOAA), which have been the lynchpin for knowledge about atmospheric CH 4 since the 1980s. To achieve that we use the GEOS-Chem atmospheric chemistry transport model and an inverse method to infer a posteriori flux estimates from the NOAA and GOSAT data using common a priori emission inventories. We find the main benefit of GOSAT data is from its additional coverage over the tropics where we report large increases since the 2014/2016 El Niño, driven by biomass burning, biogenic emissions and energy production. We use data from the European TROPOspheric Monitoring Instrument to show how better spatial coverage and resolution measurements allow us to quantify previously unattainable diffuse sources of CH 4 , thereby opening up a new research frontier. This article is part of a discussion meeting issue ‘Rising methane: is warming feeding warming? (part 1)’.

Funder

Natural Environment Research Council

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3