Metals and non-metals in the periodic table

Author:

Yao Benzhen1ORCID,Kuznetsov Vladimir L.1ORCID,Xiao Tiancun1ORCID,Slocombe Daniel R.2ORCID,Rao C. N. R.3ORCID,Hensel Friedrich4,Edwards Peter P.1ORCID

Affiliation:

1. KACST-Oxford Centre of Excellence in Petrochemicals, Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, UK

2. School of Engineering, Cardiff University, Queen's Buildings, The Parade, Cardiff CF24 3AA, UK

3. New Chemistry Unit, Chemistry and Physics of Materials Unit, Theoretical Science Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur PO, Bangalore 560064, India

4. Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse, Marburg 35032, Germany

Abstract

The demarcation of the chemical elements into metals and non-metals dates back to the dawn of Dmitri Mendeleev's construction of the periodic table; it still represents the cornerstone of our view of modern chemistry. In this contribution, a particular emphasis will be attached to the question ‘Why do the chemical elements of the periodic table exist either as metals or non-metals under ambient conditions?’ This is perhaps most apparent in the p-block of the periodic table where one sees an almost-diagonal line separating metals and non-metals. The first searching, quantum-mechanical considerations of this question were put forward by Hund in 1934. Interestingly, the very first discussion of the problem—in fact, a pre-quantum-mechanical approach—was made earlier, by Goldhammer in 1913 and Herzfeld in 1927. Their simple rationalization, in terms of atomic properties which confer metallic or non-metallic status to elements across the periodic table, leads to what is commonly called the Goldhammer–Herzfeld criterion for metallization. For a variety of undoubtedly complex reasons, the Goldhammer–Herzfeld theory lay dormant for close to half a century. However, since that time the criterion has been repeatedly applied, with great success, to many systems and materials exhibiting non-metal to metal transitions in order to predict, and understand, the precise conditions for metallization. Here, we review the application of Goldhammer–Herzfeld theory to the question of the metallic versus non-metallic status of chemical elements within the periodic system. A link between that theory and the work of Sir Nevill Mott on the metal-non-metal transition is also highlighted. The application of the ‘simple’, but highly effective Goldhammer–Herzfeld and Mott criteria, reveal when a chemical element of the periodic table will behave as a metal, and when it will behave as a non-metal. The success of these different, but converging approaches, lends weight to the idea of a simple, universal criterion for rationalizing the instantly-recognizable structure of the periodic table where … the metals are here, the non-metals are there … The challenge of the metallic and non-metallic states of oxides is also briefly introduced. This article is part of the theme issue ‘Mendeleev and the periodic table’.

Funder

Engineering and Physical Sciences Research Council

King Abdulaziz City for Science and Technology

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference56 articles.

1. LXIII.—The Periodic Law of the Chemical Elements

2. On the correlation between the properties of the elements and their atomic weights;Mendeleev DI;Zhur. Russ. Khim. Obshch,1869

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3