Optimizing the cost of the STEP programme

Author:

Lux Hanni1ORCID,Brown Chris1,Butcher Matthew1,Chapman Rhian1ORCID,Foster Jack1ORCID,Nawal Nousheen1

Affiliation:

1. UKAEA (United Kingdom Atomic Energy Authority), Culham Campus , Abingdon, Oxfordshire OX14 3DB, UK

Abstract

The Spherical Tokamak for Energy Production (STEP) programme is a world-leading fusion power plant programme that has embedded a cost conscience in its design from the early phases. This firmly addresses the attitude of cost complacency of which many major infrastructure projects have historically been accused. While a detailed and highly accurate whole life cycle cost analysis is not possible, or even valuable, during the conceptual design stage, this early design phase is still the most critical programme phase where a focus on costs can drive longer term reductions and impact whole life cycle costs at the high level. Consequently, appropriate estimating methods for these early-stage designs and lessons learned from other industries are used to inform design decisions and ensure cost is part of the overall option analysis. Hence, while the overall programme cost estimate is too immature to be a reliable indicator for the final programme costs, significant effort has been undertaken to understand the major cost drivers and take action to make the STEP design as cost-effective as possible. This article is part of the theme issue ‘Delivering Fusion Energy – The Spherical Tokamak for Energy Production (STEP)’.

Funder

STEP Programme

Publisher

The Royal Society

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Plasma burn—mind the gap;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-08-26

2. Maturing the design: challenges in maturing a first of a kind fusion power plant;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-08-26

3. STEP–organizing a major project to tackle significant uncertainty;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-08-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3