Affiliation:
1. Max-Planck-Institut für Plasmaphysik, Garching, Germany
Abstract
Harnessing energy produced by thermonuclear fusion reactions has the potential to provide a clean and inexpensive source of energy to Earth. However, throughout the past seven decades, physicists learned that creating our very own fusion energy source is very difficult to achieve. We constructed a component-based, multiscale fusion workflow to model fusion plasma inside the core of a tokamak device. To ensure the simulation results agree with experimental values, the model needs to undergo the process of verification, validation and uncertainty quantification (VVUQ). This paper will go over the VVUQ work carried out in the multiscale fusion workflow (MFW), with the help of the EasyVVUQ software library developed by the VECMA project. In particular, similarity of distributions from simulation and experiment is explored as a validation metric. Such initial validation measures provide insights into the accuracy of the simulation results.
This article is part of the theme issue ‘Reliability and reproducibility in computational science: implementing verification, validation and uncertainty quantification
in silico
’.
Funder
European Union's Horizon 2020 research and innovation programme
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献