Rare isotope-containing diamond colour centres for fundamental symmetry tests

Author:

Morris Ian M.1,Klink Kai1,Singh Jaideep T.1,Mendoza-Cortes Jose L.2ORCID,Nicley Shannon S.234ORCID,Becker Jonas N.14ORCID

Affiliation:

1. Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA

2. Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA

3. Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, USA

4. Coatings and Diamond Technologies Division, Center Midwest (CMW), Fraunhofer USA Inc., 1449 Engineering Research Court,East Lansing, MI 48824, USA

Abstract

Detecting a non-zero electric dipole moment in a particle would unambiguously signify physics beyond the Standard Model. A potential pathway towards this is the detection of a nuclear Schiff moment, the magnitude of which is enhanced by the presence of nuclear octupole deformation. However, due to the low production rate of isotopes featuring such ‘pear-shaped’ nuclei, capturing, detecting and manipulating them efficiently is a crucial prerequisite. Incorporating them into synthetic diamond optical crystals can produce defects with defined, molecule-like structures and isolated electronic states within the diamond band gap, increasing capture efficiency, enabling repeated probing of even a single atom and producing narrow optical linewidths. In this study, we used density functional theory to investigate the formation, structure and electronic properties of crystal defects in diamond containing 229 Pa , a rare isotope that is predicted to have an exceptionally strong nuclear octupole deformation. In addition, we identified and studied stable lanthanide-containing defects with similar electronic structures as non-radioactive proxies to aid in experimental methods. Our findings hold promise for the existence of such defects and can contribute to the development of a quantum information processing-inspired toolbox of techniques for studying rare isotopes. This article is part of the Theo Murphy meeting issue ‘Diamond for quantum applications’.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experimental perspectives on the matter–antimatter asymmetry puzzle: developments in electron EDM and H¯ experiments;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-12-18

2. A special issue preface: diamond for quantum applications;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-12-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3