Transition of fluctuations from Gaussian state to turbulent state

Author:

Gotoh Toshiyuki12ORCID,Yang Jingyuan3

Affiliation:

1. Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso, Nagoya 466-8555, Japan

2. Research and Education Center for Natural Sciences, Keio University, Hiyoshi, Yokohama 223-8521, Japan

3. Institute of Industry Technology, Guangzhou and Chinese Academy of Sciences, 1121 Haibin Road, Nansha Dis., Guangzhou City, People’s Republic of China

Abstract

Variation of the statistical properties of an incompressible velocity, passive vector and passive scalar in isotropic turbulence was studied using direct numerical simulation. The structure functions of the gradients, and the moments of the dissipation rates, began to increase at about R λ 2 from the Gaussian state and grew rapidly at R λ > 20 in the turbulent state. A contour map of the probability density functions (PDFs) indicated that PDF expansion of the gradients of the passive vector and passive scalar begins at around R λ 4 , whereas that of the longitudinal velocity gradient PDF is more gradual. The left tails of the dissipation rate PDF were found to follow a power law with an exponent of 3/2 for the incompressible velocity and passive vector dissipation rates, and 1/2 for the scalar dissipation rate and the enstrophy; they remained constant for all Reynolds numbers, indicating the universality of the left tail. The analytical PDFs of the dissipation rates and enstrophy of the Gaussian state were obtained and found to be the Gamma distribution. It was shown that the number of terms contributing to the dissipation rates and the enstrophy determines the decay rates of the two PDFs for low to moderate amplitudes. This article is part of the theme issue ‘Scaling the turbulence edifice (part 1)’.

Funder

High Performance Computing Infrastructure

Ministry of Education, Culture, Sports, Science and Technology (MEXT) KAKENHI

National Institute for Fusion Science

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3