Motion estimation and correction for simultaneous PET/MR using SIRF and CIL

Author:

Brown Richard12ORCID,Kolbitsch Christoph23ORCID,Delplancke Claire4ORCID,Papoutsellis Evangelos56ORCID,Mayer Johannes3ORCID,Ovtchinnikov Evgueni5,Pasca Edoardo5ORCID,Neji Radhouene27,da Costa-Luis Casper2ORCID,Gillman Ashley G.8ORCID,Ehrhardt Matthias J.49ORCID,McClelland Jamie R.1011ORCID,Eiben Bjoern1011ORCID,Thielemans Kris111ORCID

Affiliation:

1. Institute of Nuclear Medicine, University College London, London, UK

2. School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK

3. Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany

4. Department of Mathematical Sciences, University of Bath, Bath, UK

5. Scientific Computing Department, STFC, UKRI, Rutherford Appleton Laboratory, Harwell Campus, Didcot, UK

6. Henry Royce Institute, Department of Materials, The University of Manchester, Manchester, UK

7. MR Research Collaborations, Siemens Healthcare, Frimley, UK

8. Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, Townsville, Australia

9. Institute for Mathematical Innovation, University of Bath, UK

10. Centre for Medical Image Computing, University College London, UK

11. Department of Medical Physics and Biomedical Engineering, University College London, UK

Abstract

SIRF is a powerful PET/MR image reconstruction research tool for processing data and developing new algorithms. In this research, new developments to SIRF are presented, with focus on motion estimation and correction. SIRF’s recent inclusion of the adjoint of the resampling operator allows gradient propagation through resampling, enabling the MCIR technique. Another enhancement enabled registering and resampling of complex images, suitable for MRI. Furthermore, SIRF’s integration with the optimization library CIL enables the use of novel algorithms. Finally, SPM is now supported, in addition to NiftyReg, for registration. Results of MR and PET MCIR reconstructions are presented, using FISTA and PDHG, respectively. These demonstrate the advantages of incorporating motion correction and variational and structural priors. This article is part of the theme issue ‘Synergistic tomographic image reconstruction: part 2’.

Funder

Engineering and Physical Sciences Research Council

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3