Affiliation:
1. The Roslin Institute, The University of Edinburgh, Midlothian EH25 9RG, UK
2. Biomathematics and Statistics Scotland, James Clerk Maxwell Building, The King's Buildings, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
Abstract
Markov chain Monte Carlo (MCMC) is widely used for Bayesian inference in models of complex systems. Performance, however, is often unsatisfactory in models with many latent variables due to so-called poor mixing, necessitating the development of application-specific implementations. This paper introduces ‘posterior-based proposals' (PBPs), a new type of MCMC update applicable to a huge class of statistical models (whose conditional dependence structures are represented by directed acyclic graphs). PBPs generate large joint updates in parameter and latent variable space, while retaining good acceptance rates (typically 33%). Evaluation against other approaches (from standard Gibbs/random walk updates to state-of-the-art Hamiltonian and particle MCMC methods) was carried out for widely varying model types: an individual-based model for disease diagnostic test data, a financial stochastic volatility model, a mixed model used in statistical genetics and a population model used in ecology. While different methods worked better or worse in different scenarios, PBPs were found to be either near to the fastest or significantly faster than the next best approach (by up to a factor of 10). PBPs, therefore, represent an additional general purpose technique that can be usefully applied in a wide variety of contexts.
Funder
The Scottish Government's Rural and Environment Science and Analytical Services Division (RESAS).
Biotechnology and Biological Sciences Research Council
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献