The evolution and role of the hyposphene-hypantrum articulation in Archosauria: phylogeny, size and/or mechanics?

Author:

Stefanic Candice M.12ORCID,Nesbitt Sterling J.1

Affiliation:

1. Department of Geosciences, Virginia Tech, Blacksburg, VA 24061, USA

2. Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794, USA

Abstract

Living members of Archosauria, the reptile clade containing Crocodylia and Aves, have a wide range of skeletal morphologies, ecologies and body size. The range of body size greatly increases when extinct archosaurs are included, because extinct Archosauria includes the largest members of any terrestrial vertebrate group (e.g. 70-tonne titanosaurs, 20-tonne theropods). Archosaurs evolved various skeletal adaptations for large body size, but these adaptations varied among clades and did not always appear consistently with body size or ecology. Modification of intervertebral articulations, specifically the presence of a hyposphene-hypantrum articulation between trunk vertebrae, occurs in a variety of extinct archosaurs (e.g. non-avian dinosaurs, pseudosuchians). We surveyed the phylogenetic distribution of the hyposphene-hypantrum to test its relationship with body size. We found convergent evolution among large-bodied clades, except when the clade evolved an alternative mechanism for vertebral bracing. For example, some extinct lineages that lack the hyposphene-hypantrum articulation (e.g. ornithischians) have ossified tendons that braced their vertebral column. Ossified tendons are present even in small taxa and in small-bodied juveniles, but large-bodied taxa with ossified tendons reached those body sizes without evolving the hyposphene-hypantrum articulation. The hyposphene-hypantrum was permanently lost in extinct crownward members of both major archosaur lineages (i.e. Crocodylia and Aves) as they underwent phyletic size decrease, changes in vertebral morphology and shifts in ecology.

Funder

Virginia Polytechnic Institute and State University

University of California Museum of Paleontology

Publisher

The Royal Society

Subject

Multidisciplinary

Reference128 articles.

1. Ecological Guild Evolution and the Discovery of the World's Smallest Vertebrate

2. Body size in proboscideans, with notes on elephant metabolism

3. Giants and Bizarres: Body Size of Some Southern South American Cretaceous Dinosaurs

4. Body mass estimations in Lujanian (late Pleistocene-early Holocene of South America) mammal megafauna;Fariña RA;Mastozool. Neotrop.,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3