Affiliation:
1. Department of Geosciences, Virginia Tech, Blacksburg, VA 24061, USA
2. Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794, USA
Abstract
Living members of Archosauria, the reptile clade containing Crocodylia and Aves, have a wide range of skeletal morphologies, ecologies and body size. The range of body size greatly increases when extinct archosaurs are included, because extinct Archosauria includes the largest members of any terrestrial vertebrate group (e.g. 70-tonne titanosaurs, 20-tonne theropods). Archosaurs evolved various skeletal adaptations for large body size, but these adaptations varied among clades and did not always appear consistently with body size or ecology. Modification of intervertebral articulations, specifically the presence of a hyposphene-hypantrum articulation between trunk vertebrae, occurs in a variety of extinct archosaurs (e.g. non-avian dinosaurs, pseudosuchians). We surveyed the phylogenetic distribution of the hyposphene-hypantrum to test its relationship with body size. We found convergent evolution among large-bodied clades, except when the clade evolved an alternative mechanism for vertebral bracing. For example, some extinct lineages that lack the hyposphene-hypantrum articulation (e.g. ornithischians) have ossified tendons that braced their vertebral column. Ossified tendons are present even in small taxa and in small-bodied juveniles, but large-bodied taxa with ossified tendons reached those body sizes without evolving the hyposphene-hypantrum articulation. The hyposphene-hypantrum was permanently lost in extinct crownward members of both major archosaur lineages (i.e. Crocodylia and Aves) as they underwent phyletic size decrease, changes in vertebral morphology and shifts in ecology.
Funder
Virginia Polytechnic Institute and State University
University of California Museum of Paleontology
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献