Affiliation:
1. Center for Human Metabolomics, North-West University, Hoffman street, Potchefstroom, South Africa
2. Chemical Resource Beneficiation (CRB), North-West University, Potchefstroom, South Africa
Abstract
Gold nanostars are being used more regularly in the biosensing field. Despite their useful attributes, there is still a need to optimize aspects of the synthesis and stability. The seedless, synthetic method comprising 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) is a facile, rapid method; however, it produces heteromorphic nanostars. The modification of a HEPES method resulted in a silver-assisted, seedless gold nanostar synthesis method. The nanostars resulting from this method were monodispersed, multi-branched and approximately 37 ± 2 nm in diameter. It proved to be a repeatable method that produced homogeneous and robust nanostars. Once functionalized with polyvinylpyrrolidone 10 000, the new nanostars were observed to be stable in various environments such as salt, ionic strength and cell culture medium. In conclusion, the addition of the silver nitrate improved the morphology of the reported HEPES nanostars for the purpose of nanobiosensor development.
Funder
Technology Innovation Agency
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献