In slow motion: radula motion pattern and forces exerted to the substrate in the land snail Cornu aspersum (Mollusca, Gastropoda) during feeding

Author:

Krings Wencke1ORCID,Faust Taissa1,Kovalev Alexander2ORCID,Neiber Marco Thomas1,Glaubrecht Matthias1,Gorb Stanislav2ORCID

Affiliation:

1. Center of Natural History (CeNak), University of Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany

2. Functional Morphology and Biomechanics, Zoological Institute of the University of Kiel, Am Botanischen Garten 9, 24118 Kiel, Germany

Abstract

The radula is the anatomical structure used for feeding in most species of Mollusca. Previous studies have revealed that radulae can be adapted to the food or the substrate the food lies on, but the real, in vivo forces exerted by this organ on substrates and the stresses that are transmitted by the teeth are unknown. Here, we relate physical properties of the radular teeth of Cornu aspersum (Müller. 1774 Vermium terrestrium et fluviatilium, seu animalium infusoriorum, helminthicorum, et testaceorum, non marinorum, succincta historia. Volumen alterum . Heineck & Faber, Havniæ & Lipsiæ.), a large land snail, with experiments revealing their radula scratching force. The radula motion was recorded with high-speed video, and the contact area between tooth cusps and the substrate was calculated. Forces were measured in all directions; highest forces (106.91 mN) were exerted while scratching, second highest forces while pulling the radula upwards and pressing the food against its counter bearing, the jaw, because the main ingesta disaggregation takes place during those two processes. Nanoindentation revealed that the tooth hardness and elasticity in this species are comparable to wood. The teeth are softer than some of their ingesta, but since the small contact area of the tooth cusps (227 µm 2 ) transmits high local pressure (4698.7 bar) on the ingesta surface, harder material can still be cut or pierced with abrasion. This method measuring the forces produced by the radula during feeding could be used in further experiments on gastropods for better understanding functions and adaptations of radulae to ingesta or substrate, and hence, gastropods speciation and evolution.

Publisher

The Royal Society

Subject

Multidisciplinary

Reference97 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3