Original plant traceability of Dendrobium species using multi-spectroscopy fusion and mathematical models

Author:

Wang Ye1ORCID,Zuo Zhi-Tian2,Huang Heng-Yu1,Wang Yuan-Zhong1

Affiliation:

1. College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China

2. Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming 650200, People's Republic of China

Abstract

Dendrobium is the largest genus of orchids most of which have excellent medicinal properties. Fresh stems of some species have been consumed in daily life by Asians for thousands of years. However, there are differences in flavour and clinical efficacy among different species. Therefore, it is necessary for a detector to establish an effective and rapid method controlling botanical origins of these crude materials. In our study, three spectroscopies including mid-infrared (MIR) (transmission and reflection mode) and near-infrared (NIR) spectra were investigated for authentication of 12 Dendrobium species. Generally, two fusion strategies, reflection MIR and NIR spectra, were combined with three mathematical models (random forest, support vector machine with grid search (SVM-GS) and partial least-squares discrimination analysis (PLS-DA)) for discrimination analysis. In conclusion, a low-level fusion strategy comprising two spectra after pretreated by the second derivative and multiplicative scatter correction was recommended for discrimination analysis because of its excellent performance in three models. Compared with MIR spectra, NIR spectra were more responsible for the discrimination according to a bi-plot analysis of PLS-DA. Moreover, SVM-GS and PLS-DA were suitable for accurate discrimination (100% accuracy rates) of calibration and validation sets. The protocol combined with low-level fusion strategy and chemometrics provides a rapid and effective reference for control of botanical origins in crude Dendrobium materials.

Funder

Key Project of Yunnan Provincial Natural Science Foundation

Publisher

The Royal Society

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3