Transient to stationary radon ( 220 Rn) emissions from a phonolitic rock exposed to subvolcanic temperatures

Author:

Mollo Silvio12ORCID,Tuccimei Paola3,Soligo Michele3,Galli Gianfranco2,Iezzi Gianluca24,Scarlato Piergiorgio2

Affiliation:

1. Dipartimento di Scienze della Terra, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Roma, Italy

2. Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata 60, 00143 Roma, Italy

3. Dipartimento di Scienze, Università ‘Roma Tre’, Largo S. L. Murialdo 1, 00146 Roma, Italy

4. Dipartimento di Ingegneria & Geologia, Università G. d'Annunzio, Via dei Vestini 30, 66013 Chieti, Italy

Abstract

Rock substrates beneath active volcanoes are frequently subjected to temperature changes caused by the input of new magma from the depth and/or the intrusion of magma bodies of variable thickness within the subvolcanic rocks. The primary effect of the influx of hot magma is the heating of surrounding host rocks with the consequent modification of their physical and chemical properties. To assess mobilization in subvolcanic thermal regimes, we have performed radon ( 220 Rn) thermal experiments on a phonolitic lava exposed to temperatures in the range of 100–900°C. Results from these experiments indicate that transient Rn signals are not unequivocally related to substrate deformation caused by tectonic stresses, but rather to the temperature-dependent diffusion of radionuclides through the structural discontinuities of rocks which serve as preferential pathways for gas release. Intense heating/cooling cycles are accompanied by rapid expansion and contraction of minerals. Rapid thermal cycling produced both inter- and intra-crystal microfracturing, as well as the formation of macroscopic faults. The increased number of diffusion paths dramatically intensified Rn migration, leading to much higher emissions than temperature-dependent transient changes. This geochemical behaviour is analogous to positive anomalies recorded on active volcanoes where dyke injections produce thermal stress and deformation in the host rocks. An increased Rn signal far away from the location of a magmatic intrusion is also consistent with microfracturing of subsurface rocks over long distances via thermal stress propagation and the opening of new pathways.

Publisher

The Royal Society

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3