A new understanding of coronary curvature and haemodynamic impact on the course of plaque onset and progression

Author:

Zhang Mingzi1ORCID,Gharleghi Ramtin1,Shen Chi1,Beier Susann1

Affiliation:

1. School of Mechanical and Manufacturing Engineering, University of New South Wales , Sydney, New South Wales 2052, Australia

Abstract

The strong link between atherosclerosis and luminal biomechanical stresses is well established. Yet, this understanding has not translated into preventative coronary diagnostic imaging, particularly due to the under-explored role of coronary anatomy and haemodynamics in plaque onset, which we aim to address with this work. The left coronary trees of 20 non-stenosed (%diameter stenosis [%DS] = 0), 12 moderately (0 < %DS < 70) and 7 severely (%DS ≥ 70) stenosed cases were dissected into bifurcating and non-bifurcating segments for whole-tree and segment-specific comparisons, correlating nine three-dimensional coronary anatomical features, topological shear variation index (TSVI) and luminal areas subject to low time-average endothelial shear stress (%LowTAESS), high oscillatory shear index (%HighOSI) and high relative residence time (%HighRRT). We found that TSVI is the only metric consistently differing between non-stenosed and stenosed cases across the whole tree, bifurcating and non-bifurcating segments ( p  < 0.002, AUC = 0.876), whereas average curvature and %HighOSI differed only for the whole trees ( p  < 0.024) and non-bifurcating segments ( p  < 0.027), with AUC > 0.711. Coronary trees with moderate or severe stenoses differed only in %LowTAESS ( p  = 0.009) and %HighRRT ( p  = 0.012). This suggests TSVI, curvature and %HighOSI are potential factors driving plaque onset, with greater predictive performance than the previously recognized %LowTAESS and %HighRRT, which appears to play a role in plaque progression.

Funder

National Health and Medical Research Council

NSW Health

Publisher

The Royal Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3