On the nature of "golgi bodies” in fixed material

Author:

Abstract

A great deal has been published in recent years upon cytoplasmic structures appearing in fixed material. Among them, those described as Golgi elements, bodies, apparatus and dictyosomes have, perhaps, received most attention. It is unfortunate that these, together with other structures, have been classed as “Cytoplasmic inclusions” (Gatenby, 1917-21, and others). This is a misleading term which obviously does not convey the meaning intended.. The structures or bodies referred to are supposed to arise in the cytoplasm,, or, being credited with the power of multiplication and development, to be handed on in the cytoplasm from one cell generation to another. The Golgi apparatus is described as being “ of very wide distribution among the cells of higher animals, and is known in the Protozoa, • everywhere showing the same general characters ; and there is reason to believe that the same may be true of plant cells, though considerable doubt concerning this still exists.” (Wilson, 1925.) The apparatus or elements may vary from a localised, network to scattered granules, curved rods, plates or ring-like bodies. The Golgi elements are soluble in acetic acid, and hence it has been assumed that they escaped the notice of earlier observers. No acetic acid, a very usual ingredient of fixatives, is used in the treatment of material in which Golgi elements are to be demonstrated. While chondriosomes, in suitably fixed preparations, darken in osmic acid (OsO 4 ), the Golgi apparatus appears intensely black; hence the two are sometimes supposed to be chemically related. It is claimed that chondriosomes may be differentiated from Golgi bodies by washing the preparation that has been treated with osmic acid in turpentine, when the chondriosomes turn brown, the Golgi bodies remaining intensely black. (Gatenby, 1921.) The chondriosomes, after fixation, are not dependent for their demonstration upon reduction of the reagent used (e. g., OsO 4 or A g NO 3 .), but will stain with certain aniline dyes. Hence it seems probable that there is a definite difference between them and the Golgi elements. [It seems likely that many of the structures produced by the OsO 4 process and labelled chondriosomes are not the same as those demonstrated by other methods. ( April 12, 1927.)]

Publisher

The Royal Society

Subject

General Medicine

Reference17 articles.

1. Baumgartner W J. ' Kansas University Sci. Bull. ' vol. 1 No. 2 (Old Series vol. 11) (1902). 'Biol. Bull." (1904).

2. Benda C. · Verh. der Physiol. Ges. zu Berlin' (1896).

3. Butschli 0. ' Protoplasm and Microscopic Foams ' English Trans. E. A. Minchin (1894).

4. Corner G. W. 'Journ. Biol. Chem. ' vol. 29 p. 141 (1917).

5. Cowdray E. V. "Cytological Constituents" in 'General Cytology ' Chicago University Press (1924).

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. References;Discovering Cell Mechanisms;2005-10-10

2. Afterword;Discovering Cell Mechanisms;2005-10-10

3. Giving Cell Biology an Institutional Identity;Discovering Cell Mechanisms;2005-10-10

4. New Knowledge: The Mechanisms of the Cytoplasm;Discovering Cell Mechanisms;2005-10-10

5. Entering the Terra Incognita between Biochemistry and Cytology: Putting New Research Tools to Work in the 1940s;Discovering Cell Mechanisms;2005-10-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3