Ultra-violet and infra-red investigations on muscle

Author:

Abstract

Infra-red absorption spectroscopy of muscle has already been carried out, using the Burch reflecting microscope (Barer, Cole & Thompson 1949: Barer, Thompson & Williams unpublished). There are considerable difficulties involved in this type of work. In the first place it is rather doubtful whether such measurements will ever be possible on living muscle owing to the presence of water, which possesses intense absorption bands in some of the most useful regions of the infra-red spectrum. It may be possible to overcome this difficulty to some extent by using heavy water which has a different absorption spectrum. It is in principle possible to obtain information similar to that given by infra-red spectroscopy, even in the presence of water, by means of Raman spectroscopy, but the technical difficulties involved, particularly fight scattering by colloids, would seem to preclude this method of attack so far as muscle is concerned. Our infra-red measurements have hitherto been confined to dried material. The results indicate that there is little prospect of working with whole muscles, as even single isolated striated fibres of the frog, rabbit and crab were usually too thick. However, it was possible to obtain good spectra in the chemically important region from 3 to 14/µon exceptionally thin single fibres or on artificially compressed fibres. An attempt was made to detect dichroism by means of polarized infra-red radiation, but to our surprise none was observed throughout the 3 to 14µrange, even though the material used showed strong birefringence in the visible region. Hr Stocken and I have recently examined certain molecular models of muscle, in the fight of the work of Ambrose, Elliott & Temple (1949) on myosin, and it now appears possible that infra-red dichroism of muscle might be expected to manifest itself only under rather special conditions. We hope to put these theoretical deductions to experimental test. As regards measurements on muscle in the ultra-violet region, the position is much more promising. It is quite possible to determine the absorption spectrum of theAorIband in living single fibres. The entire spectrum from about 230 mµin the ultra-violet to over 600 mµ, in the visible can be recorded simultaneously, using the reflecting microscope. This technique can also be used with polarized ultra-violet fight, in order to detect variation of dichroism in crystals at different wave-lengths (Barer, Jope & Perutz unpublished), and I intend to apply it to the study of dichroism in muscle fibres. Another new possibility is the observation of birefringence, as well as dichroism, in the ultra-violet. I have recently carried out experiments with a view to developing a new type of ultra-violet polarizer and it should now be possible to use the reflecting microscope as an ultra-violet polarizing microscope.

Publisher

The Royal Society

Subject

General Medicine

Reference103 articles.

1. Ambrose E. J. & Hanby W. E. 1949 Nature 163 483.

2. Ambrose E. J. Elliott A. & Temple R. B. 1949 Nature 163 859.

3. Croonian Lecture - On the structure of biological fibres and the problem of muscle

4. Astbury W. T. 19476 Nature 160 388.

5. Astbury W. T. 1949 Experimental cell research suppl. 1 p. 234 (being the published proceedings of the 6th Int. Congr. Experimental Cytology Stockholm 1947).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. INFRARED SPECTRAL STUDIES OF TISSUES;Annals of the New York Academy of Sciences;1957-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3