Abstract
The mammary gland in full lactation had for long been recognized as an ideal system for the study of the biosynthesis of protein. The discoveries during the last 5 years of the incorporation of labelled amino acids into the microsomes of cell homogenates and of other reactions of amino acids which might be on the pathway to protein synthesis, encouraged us to study the fate of amino acids in various systems prepared from mammary cells.
De novo
protein synthesis had not yet been proved in any system which contained no intact cells. So far no net increase in any defined protein fraction during incubations has been found or indeed looked for in our experiments. Naturally one hopes that such studies of the fate of labelled amino acids in cell-free preparations will reveal the detail of enzymic reactions which will prove to be part of the mechanisms of protein biosynthesis. Three types of reactions of amino acids in cell-free preparations from homogenates of many tissues have been studied most extensively. (1) The acyl activation of amino acids to form amino acid-acid adenylates in the presence of
ATP
and ‘activating enzymes’. (2) The formation of compounds of cell sap-ribonucleic acid (
SRN A
) with amino acids in the presence of
ATP
and ‘activating enzymes’. (3) The incorporation of amino acids into intracellular particles either from free amino acid or by transfer from amino-acid-
SRN A
compounds in the presence of
ATP
, guanosine triphosphate (
GTP
) and ‘activating enzymes’. In this paper we are giving a survey of the results of studies on these three types of reactions in systems prepared from mammary tissue and we are relating these to results obtained with other systems elsewhere. Some comparative studies of the incorporation of labelled amino acids into protein fractions of intact mammary cells (minced tissue) are also presented. All the original results given here were obtained from experiments with guinea-pig mammary gland preparations from animals 2 to 6 days after parturition. Experimental detail will be reported elsewhere.
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献