The mechanism of water absorption by roots I. Preliminary studies on the effects of hydrostatic pressure gradients

Author:

Abstract

During transpiration the hydrostatic tension which develops in the xylem conducting elements of the root draws water from the soil through the intervening tissues of the cortex, etc. It is uncertain whether this movement is entirely diffusional or in part a mass flow. To detect any such mass flow tomato plants grown in water culture were decapitated and placed in a canister through the lid of which the cut stem protruded and in which the pressure on the culture medium could be raised. The resulting rate of exudation (flux) was measured, and compared with the flux caused by an equivalent difference in osmotic potential obtained by measuring the ∆ f. p. of the medium and sap exuded. If these values of flux were equal, movement was by diffusion alone, but if pressure caused a greater flux, an additional mass flow was indicated. Preliminary experiments indicated a much greater flux in response to differences of pressure than osmotic potential, but accurate assessment of the effect was precluded by difficulties inherent in this straightforward approach. A less direct technique was therefore devised; the change in flux caused by changing the osmotic potential of the external medium (the hydrostatic pressure being maintained constant) was compared with the change in flux caused by changing the external pressure (the osmotic potential of the external medium being kept constant). The changes in flux were measured in such a way as to minimize changes in the osmotic potential in the xylem and in resistances to diffusion or mass flow respectively. In this way the change in flux per unit change in osmotic potential difference across the cortex (osmotic permeability coefficient,k0) and the change in flux per unit change in pressure difference across the cortex (pressure permeability coefficient,kp) could be compared under the same pressure gradient and in addition the effects of pressure gradients onk0could be studied. Thus, the effects of a pressure gradient on the diffusional movement of water could be assessed, as well as any mass flow component of the flux detected and measured.

Publisher

The Royal Society

Subject

General Medicine

Reference10 articles.

1. Adams R. etal 1944 Organic reactions vol. II. New York: John Wiley and Sons.

2. Acta hot;Andel O. M.;Neerl.,1953

3. Analysis of the Exudation Process in Tomato Plants

4. THE FREEZING POINT DETERMINATION OF PHYSIOLOGICAL SOLUTIONS

5. J;Jahlin J. M.;Gen. Physiol.,1933

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3