The ‘instantaneous’ elasticity of active muscle

Author:

Abstract

When the tension of a muscle contracting isometrically is rapidly lowered, there is an immediate and proportional rise of temperature. This is not due to physiological shortening, which is a relatively slow process, but is directly connected with the fall of tension. A similar effect occurs in any material possessing a normal (positive) thermal coefficient of linear expansion. It is the opposite of what is observed in bodies with long-range rubber-like elasticity. The experimental relation, in active muscle, between the heat (∆ Q ) immediately produced and the rapid fall of tension (-∆ P ) is ∆ Q = 0∙018 l o (-∆ P ), where l o is the standard length of the muscle. The constant 0∙018 is considerably greater than for metals but about the same as for ebonite and wood. In resting muscle, in the range of moderate tensions, the constant is of the opposite sign, and its absolute size is five to ten times as great. Resting muscle, in this range, has rubber-like elastic properties. During active contraction, therefore, the contractile filaments possess normal and not long-range elasticity. The force exerted by active muscle is not of thermokinetic origin. Unlike resting muscle its entropy and its internal energy both decrease when its tension is rapidly lowered. The power of physiological shortening, at a rate depending on the tension, is not directly derived from elastic properties. In normal relaxation after an isometric contraction there is known to be a substantial production of heat. This is derived partly from elastic energy developed earlier during contraction, in the series elastic component: the balance is fully accounted for by the thermo­elastic heat resulting from the fall of tension.

Publisher

The Royal Society

Subject

General Medicine

Reference22 articles.

1. J;Physiol.,1951

2. Proc. Roy;Soc. B,1951

3. A bbott B. C. A ubert X . M. & Hill A. V. 195! Proc. Roy. Soc. B 139 86-104.

4. A bbott B. C. & Wilkie D. R . 1952 J . Physiol. 117 26P .

5. K.danske vidensk;Kaiser E .;Selsk.,1951

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mathematical modeling of the cardiac tissue;Mechanics of Advanced Materials and Structures;2021-06-25

2. Beyond bouncy gaits: The role of multiscale compliance in skeletal muscle performance;Journal of Experimental Zoology Part A: Ecological and Integrative Physiology;2019-04-01

3. Energetics of muscle contraction: further trials;The Journal of Physiological Sciences;2016-07-13

4. Indices of central aortic pressure waveform and ventricular function;Journal of Hypertension;2016-04

5. Why has reversal of the actin-myosin cross-bridge cycle not been observed experimentally?;Journal of Applied Physiology;2010-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3