A rubric for human-like agents and NeuroAI

Author:

Momennejad Ida1ORCID

Affiliation:

1. Microsoft Research NYC, Reinforcement Learning Station, 300 Lafayette, New York, NY 10012, USA

Abstract

Researchers across cognitive, neuro- and computer sciences increasingly reference ‘human-like’ artificial intelligence and ‘neuroAI’. However, the scope and use of the terms are often inconsistent. Contributed research ranges widely from mimicking behaviour , to testing machine learning methods as neurally plausible hypotheses at the cellular or functional levels, or solving engineering problems. However, it cannot be assumed nor expected that progress on one of these three goals will automatically translate to progress in others. Here, a simple rubric is proposed to clarify the scope of individual contributions, grounded in their commitments to human-like behaviour , neural plausibility or benchmark/engineering/computer science goals. This is clarified using examples of weak and strong neuroAI and human-like agents, and discussing the generative, corroborate and corrective ways in which the three dimensions interact with one another. The author maintains that future progress in artificial intelligence will need strong interactions across the disciplines, with iterative feedback loops and meticulous validity tests—leading to both known and yet-unknown advances that may span decades to come. This article is part of a discussion meeting issue ‘New approaches to 3D vision’.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Reference182 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Is artificial consciousness achievable? Lessons from the human brain;Neural Networks;2024-12

2. Finite element modeling and comparative mechanical analysis of several hoeing tools;2024-01-10

3. Deep social neuroscience: the promise and peril of using artificial neural networks to study the social brain;Social Cognitive and Affective Neuroscience;2024-01-01

4. NeuroAI-Driven Advanced Deep Brain Stimulation for Precision Management of Movement Disorders;2023 2nd International Conference on Automation, Computing and Renewable Systems (ICACRS);2023-12-11

5. Video-and-Language (VidL) models and their cognitive relevance;2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW);2023-10-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3